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Abstract Fault damage zones in highly porous reser-
voirs are dominated by deformation bands that gener-
ally have permeability-reducing properties. Due to an
absence of sufficiently detailed measurements and the
irregular distribution of deformation bands, a statistical
approach is applied to study their influence on flow.
A stochastic model of their distribution is constructed,
and band density, distribution, orientation, and flow
properties are chosen based on available field observa-
tions. The sensitivity of these different parameters on
the upscaled flow is analyzed. The influence of a het-
erogeneous permeability distribution was also studied
by assuming the presence of high permeability holes
within bands. The fragmentation and position of these
holes affect significantly the block-effective permeabil-
ity. Results of local upscaling with a diagonal and
full upscaled permeability tensor are compared, and
qualitatively similar results for the flow characteristics
are obtained. Further, the procedure of iterative local–
global upscaling is applied to the problem.
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1 Introduction

In reservoirs, fault zones represent tabular zones of
deformed rock that introduce significant petrophysical
anisotropy, which potentially perturbs fluid flow during
production. Fault zones are typically composed of a
fault core, which accumulates most of the displacement,
and an enveloping damage zone [33]. Even though the
fault core represents the most heterogeneous structural
element in a deformed reservoir rock, the damage zone
can have an additional impact on fluid flow. The dam-
age zone is a deformed rock volume that comprises
various subsidiary tectonic elements, notably structural
discontinuities such as minor faults and slip surfaces,
veins, and features known as deformation bands and
deformation band clusters.

Deformation bands are millimeter thick deformation
zones, typically with shear offsets that rarely exceed a
few centimeters even though their length can exceed
100 m (see [14] for a review). They occur in highly
porous reservoirs (∼15% or higher porosity), particu-
larly in fault damage zones, and are found not only as
single structures but also as clusters, especially close
to the fault core (Fig. 1). Their formation involves
grain reorganization by grain sliding, rotation, and/or
fracture, most commonly during compaction-assisted
shearing. The internal changes in grain arrangement
can modify the porosity and permeability within the
band. This is particularly true for cataclastic deforma-
tion bands (Fig. 1), in which grain size is reduced by
grain fracturing and permeability reductions of several
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Fig. 1 A Deformations bands
in the Entrada sandstone in
Utah [13]. Note the
distribution in clusters as well
as the conjugate arrangement.
B Photomicrograph of a
single cataclastic deformation
band displaying a reduction
of porosity due to grain
crushing

orders of magnitude is common (e.g., [13]). Cataclastic
deformation bands in porous siliciclastic sedimentary
rocks may, thus, potentially baffle fluid flow (e.g., [14])
at least at reservoir production timescale.

The small thicknesses of deformation bands make
their real influence on fluid flow in reservoirs difficult
to assess. Even the thickest deformation band clusters
is invisible on seismic data, and it is, therefore, im-
possible to decide whether poor well performance or
poor communication between wells is to be explained
by deformation bands, subseismic faults, or both. It is
also difficult to separate their effect from that of the
associated fault core. Calculations and field observa-
tions presented by Fossen and Bale [13] indicate that
deformation bands only have limited effects on reser-
voir production unless the bands show unusually high
permeability reductions (higher than four orders of
magnitude) or occur in very high numbers in the dam-
age zone. The results of their study are in part based
on averaging the permeability over a distance of 500 m
between an injector and a producer (including a 50 m
wide damage zone). The model is one-dimensional
and, hence, does not capture the more complex flow
pathways that could be generated at a smaller scale.
However, Odling et al. [24] suggest that even if the
fault core dominates the bulk permeability of the whole
fault zone, the contribution of the fault damage zone to
the fault sealing capacity cannot be neglected. Sternlof
et al. [31] study the flow and transport effects of com-
paction bands in sandstone. They simulate flow in two-
dimensional domains with linear dimensions of several
hundred meters, using a discrete-feature model, based
on finite-volume approximation. The numerical results
show that the presence of deformation bands has an
essential impact on the flow. The impact depends partly
on the band orientation. These contrasting views show
that large uncertainty is still associated with the role
of damage zone structures in reservoirs under produc-
tion. Moreover, in reservoir-scale flow models, where
damage zones cannot be modeled explicitly and where
major fault zones often are represented by only one
grid block, upscaling of the fine scale flow patterns is

still a challenge. The ratio between the thickness of
the deformation bands (millimeter to centimeter scale)
and the computational scale (1- to 10-m scale) may be
three to four orders of magnitude. Therefore, upscaling
methods are needed [11].

The objective of this work is to develop and study the
sensitivity of parameter data on a computational scale,
suited for the simulation of flow in fault damage zones.
More specifically, we seek to characterize the influence
of some properties of deformation band populations
on fluid flow in a coarse block (with a size of 1 ×
1 m) and understand how the effective permeability is
affected. Focus is on characteristics observed in nat-
ural damage zones represented by deformation band
populations, notably the orientation of the bands (syn-
thetic or antithetic to the fault core), their clustering,
the heterogeneous distribution of permeability along
bands, and the variable density of deformation bands
in a damage zone. Results are presented in order to
illustrate the effect of these different deformation band
configurations on the upscaled bulk permeability.

For some parameters, the uncertainty in the geo-
logical field measurements is large, leading to a large
modeling error. The modeling error is approached
through statistical models based on distributions gen-
erated from databases and from data given in the liter-
ature. Thus, both modeling error and error originating
from loss of subgrid information in the upscaling proce-
dure might be evaluated.

2 Deformation band population characteristics
in the damage zone

This study focuses on deformation band populations in
fault damage zones, and any additional secondary faults
or slip surfaces that may exist in the damage zone are
not taken into account. We are aware that if such sub-
sidiary faults and slip surfaces are open, permeability
within the fracture is enhanced [3, 12, 20], and they
could strongly enhance fluid flow in the damage zone
by connecting domains that are otherwise separated
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by a low permeability zone (such as clusters of defor-
mation bands). These fractures often contribute to fluid
flow across the stratigraphic layering. At the same time,
slip surfaces are mostly contained in deformation band
clusters [19], and the slip planes themselves have thin
cataclastic wall rocks of very low permeability. Hence,
layer-parallel fluid flow can be expected to be retarded
by both deformation band clusters, and these low per-
meability fracture wall rocks. Moreover, slip planes are
generally sparse and unconnected within fault dam-
age zones in highly porous sandstones and only form
connected networks in the fault core [24]. We, thus,
emphasize our study on the effect of the deformation
bands solely.

2.1 Deformation band distribution around the fault
core

Fault frequency profiles across fault damage zones
show an overall decrease in deformation band density
away from the fault core [2, 4, 15, 17, 21, 30]. Based on
a comprehensive database consisting of damage zone
data from Utah and Sinai (CIPR database), this de-
crease can be modeled as a logarithmic decline in more
than 80% of the cases (Fig. 2). The frequency of de-
formation bands can, thus, vary from 1 to 200 bands/m
(largest extreme value observed in Utah) along a single
damage zone, with the maximum density being close
to the fault core. If we consider a homogeneous dis-
tribution of deformation bands in the damage zone,

Fig. 2 Decrease of the frequency of deformation bands per
meter (Y) in a damage zone in siliciclastic reservoirs. The highest
densities are found close to the fault core; however, significantly
large cluster of deformation bands also exist at a certain distance
of the fault core. X is the distance from the fault core, and R2 is
the fitting factor of the logarithmic decrease to the data

the average density of deformation band is around 10–
15 bands/m, regardless of the fault throw.

2.2 Spatial distribution of the band in the damage zone

Modeling deformation band density reduction away
from the fault core by a logarithmic function is a
simplification that does not reflect the tendency of de-
formation bands to form cluster. The clustering of de-
formation bands has been characterized by Du Bernard
et al. [9] by means of a correlation analysis. The corre-
lation analysis consists of calculating the correlation in-
tegral based on the discretized equation of Grassberger
and Procaccia [16]. The equation used was adapted as:

C(r) = 2

N × (N − 1)

∑

i< j

�
(
r − ∣∣xi − x j

∣∣) ≈ rDc (1)

where N is the total number of deformation bands in
the scan lines, r is the distance, and x is the position of
the deformation band in the scan line (distance from
the fault core). � is the Heaviside function, which is
defined as �(x) = 1 if x > 0, and as �(x) = 0 if
x < 0.

The correlation function corresponds to the relative
number of pairs of deformation bands that have spacing
lower than a certain distance r. This analysis requires
knowledge of the exact position of each deformation
band along a scan line in the damage zone. If the
distribution of the deformation band is fractal, then the
function appears linear in a log–log diagram (Fig. 3A),
and its slope corresponds to the correlation dimension
Dc. The degree of clustering is, thus, characterized by
Dc. For 1D fractal organizations, Dc can vary between
0 (complete clustering) and 1 (no clustering; Fig. 3B).
Theoretically, a Dc value of 0 implies all of the defor-
mation bands to be at the same position, and a corre-
lation dimension of 1 corresponds to a homogeneous
distribution of deformation bands in the damage zone.
Observations of several damage zones of normal faults
in sandstones (using the CIPR database) have shown
that the average correlation dimension is 0.84 with a
standard deviation of 0.06, implying that deformation
bands are fractally organized in the damage zone.

2.3 Orientation of the deformation bands

Deformation bands in damage zones generally trend
subparallel to the major fault with synthetic and anti-
thetic dips [2, 19, 29], although some may trend oblique
to the major fault [12, 20]. Some studies indicate that
synthetic and antithetic structures appear to be geolog-
ically coeval and in equal proportions for faults with
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Fig. 3 Correlation analysis:
A Correlation function as a
function of the distance. The
slope of this function in a
log–log plot corresponds to
the correlation dimension.
B Examples of values of Dc
and their corresponding
frequency graphs. The
organization the closest to
the one observed in nature is
Dc = 0.85

displacement larger than around 30 m whereas smaller
faults show a dominance of synthetic structures [2, 17,
24, 29]. Within the damage zone, the abundance of each
set can also vary with location. Within a cluster, the
deformation bands have roughly the same dip direction.
Considering the correlation of dip direction between
two successive deformation bands indicates that two
deformation bands have more than 70% chance of
having the same dip direction (synthetic or antithetic)
if their spacing is less than 10 cm (analysis performed
on four scan lines using the CIPR database).

2.4 Petrophysical properties of deformation bands

Cataclastic bands are a common type of deformation
bands in fault damage zones, particularly in cases where
deformation occurred at depths in excess of 1 km; only
this type of bands will be considered in this study. Even
if these structures have been widely studied, the precise
description of their geometry (length distribution, ori-
entation, spatial continuity) and particularly the varia-
tion of their petrophysical properties are still not well
known. The thickness of the deformation bands, which
typically is around 1 mm [14], varies along many bands.
In this study, an average width of 1 mm was chosen. Sig-
nificant variations in porosity and permeability along
selected deformation bands have been documented by
Torabi and Fossen [32], but more extensive work is

needed to map the frequency and understand the mech-
anisms responsible for these changes.

3 Numerical method

The solver used in this study is based on a finite volume
method and was developed for the numerical solution
of the filtration problem. The main computational dif-
ficulty of the solution deals with the extremely irregu-
lar spatial distribution of the permeability field caused
by the existence of complex networks of deformation
bands crossing the media. It is possible to assume that
the computing complexity of the problem will grow
with an increase in number of deformation bands, per-
meability contrast, or decrease in band’s width.

We consider a steady flow through a saturated
porous medium. For a stationary 2D flow, we solve the
following Darcy law and continuity equation:

q = − 1

μ
K ∇ p (2)

∇ · q = 0 (3)

where q is the Darcy velocity, p is the pressure, μ the
dynamic viscosity (constant in all the simulations), and
K the permeability.

Because of discontinuity of the permeability K, the
finite volume method was used with a rectangular grid
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for solving the problem. Integrating Eqs. 2 and 3 over
the small volume surrounding each node point on a
mesh and applying Gauss’s theorem, we get the follow-
ing equation:
∫

Vk

∫
div

[
K grad p

]
dVk

=
∫

Sk=Gk1∪Gk2∪Gk3∪Gk4

K
∂ p
∂ n

dSk = 0 (4)

where Vk is the volume of the cell k, Sk is the surface of
the cell k, and Gk1, Gk2, Gk3, and Gk4 represent the cell
boundaries (Fig. 4).

The derivative on boundaries Gki in Eq. 3 was ap-
proximated using the work of Marchuk [23]. For exam-
ple, the flow rate through Gk4:

Qk−1/2 =
∫

Gk4

K
dp
dn

dSk4 ≈ pk − pk−1∫

[Xk−1,Xk]

1
K dx

A, (5)

where A is the length of Gk4,
[
Xk−1, Xk

] ⊥Gk4

(Fig. 4), pk is the pressure in the middle of the cell k,
and Qk−1/2 is the flow rate through Gk4.

Thus, we have a so-called dual-grid structure. The
first grid consists of a set of Sk boundaries of control
volumes Vk. The second grid consists of a set of Xk—
centers of control volumes Vk. For correct flow simula-
tion the second grid Xk should be chosen so that each
body included in its cell should intersect at least one
boundary of this cell.

We solve Eqs. 2 and 3 by using the approximation
(5) in the domain D = {

0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly
}
. The

host rock has a permeability of 1 darcy. Each upscaled
block has a size of 1 × 1 m. By default, a rectangular

Fig. 4 Method of calculation based on the finite volumes method.
Sketch of a cell k with center point Xk, volume Vk, surface Sk,
and pressure pk at Xk. Gk1, Gk2, Gk3, andGk4 are the boundaries
of the cell k

grid contains 80 × 80 nodes for one upscaled block,
and each deformation band corresponds to a 1 mm
thick band with a default permeability of 10−2 darcy.
The representation of thin deformation bands in a
numerical model is a rather difficult problem. There-
fore, the method of integral identities [23] was applied
to solve the problem with discontinuous permeability
coefficient. In our model, the integral on the right side
of Eq. 5 is computed analytically because permeability
is a piecewise function with known borders. Therefore,
the solution of Eq. 5 is exact in 1D even if the width
of the bands is much smaller than the grid size. In 2D,
some errors are introduced in the solution because the
bands are not parallel to the grid. The accuracy of the
solution was verified by comparing analytical results
with results obtained on highly resolved models. The
numerical tests presented in Fig. 5 show that the results
of the calculations do not change significantly when
the numerical resolution is increased. In these tests,
the flow rate is computed by using 40 × 40, 80 × 80
and 260 × 260 grid nodes for 20 random realizations
of deformation band distributions (Fig. 5). Here, Dc =
0.8, Iθ = 0, and the number of deformation bands is
N = 10 (see Section 5 for the meaning of the different
parameters). On two opposite boundaries, we set fixed
pressures P1 = 2 Pa and P2 = 1 Pa, whereas no flow
boundary conditions apply to the other borders (see
Fig. 7 for model setup). The relative difference between
the curves corresponding to 80 × 80 and 260 × 260
nodes is less than 2%. We consider, thus, that the
thin deformation bands are accurately resolved in the
chosen grid (80 × 80 nodes).

Furthermore, a statistical approach is used to study
the flow in the damage zone. In this work, we construct
a model describing a deformation band’s population
in the damage zone. Due to strongly irregular band
structures, we assume that several geometrical parame-
ters of this model are random functions. Therefore, the
permeability field is also considered as a random field
described completely by the probability distribution
of random parameters. Then, any flow characteristic
ξ (flow rate, velocity, effective permeability, etc.) also
becomes a random function. This approach allows us to
compute averaged flow characteristics only. Having the
ensemble of the random parameters’ realizations sam-
pled accordingly with the correspondent distribution,
we can calculate the value of flow characteristic ξ i for
each realization as well as the effective properties by
using the following statistical averaging:

Eξ ≈ 〈ξ〉 = 1

NS

Ns∑

i=1

ξi (6)
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Fig. 5 Flow rate computed by using 40 × 40, 80 × 80, and
260 × 260 grid nodes for 20 random realizations of deformation
band population, N = 10 deformation bands; Dc = 0.8, Iθ =
0, dip =π/3, KDB/KHR = 0.01. On two opposite boundaries,

we set the fixed pressures P1 = 2 Pa and P2 = 1 Pa, whereas no
flow boundary conditions apply to the other borders. The relative
difference between the two curves “80 × 80” and “260 × 260
nodes” is less than 2%

with NS as the number of realizations. Here, 〈 〉 means
the ensemble averaging.

In Monte Carlo methods, the evaluation of the sta-
tistical error ν(ξ) is essential. The standard estimation
has the following form [27]:

ν(ξ) = α(β)
σξ√
NS

(7)

where α is a coefficient depending on the confident
coefficient β. For example, α(0.997) = 3 and α(0.95) =
1.96. σξ is the standard deviation of random value ξ .
The number of realizations used in all our Monte Carlo
simulations is NS = 1,000.

4 Upscaling

As noted previously, geological models frequently in-
corporate heterogeneities on the scale of a few cen-
timeters and can contain in the order of 107 grid cells
(e.g., [24, 25]). However, current flow simulators are
technically limited to 104 to 105 cells, with grid cells
typically being a few hundred meters horizontally and
a few tens of meters vertically. Upscaling methods are,
thus, required for flow modeling. The aim of upscaling
is to reproduce the global behavior of the reservoir but
still capture the local behavior, and the challenge is to
transfer the geological information to the coarser cells

without losing crucial information existing at the finest
scale.

A large number of papers have been devoted to dif-
ferent upscaling techniques. A good survey of different
methods is presented in [11] and reviews are found in
[22, 24, 26, 28]. In general, these different approaches
can be divided in two main groups: local approaches
[5, 10, 25] and global ones [6, 18]. In the local methods,
the upscaled permeability of the coarse blocks only
depends on the real media permeability inside each
block (pure local upscaling) and on the permeability
of the surrounding area (extended local upscaling). By
contrast, global and quasi-global methods utilize the
fine-scale permeability on the whole domain for the
calculation of the upscaled permeability for each coarse
block.

The advantage of global upscaling is that the infor-
mation about the fine-scale permeability in the entire
domain is used for flow computation. However, the
main shortcoming of the global upscaling is an ex-
tremely large computational cost. Therefore, for the
numerical solution of the flow problem in whole do-
main, we apply the adaptive local–global upscaling
(ALG) [7]. The ALG procedure is briefly described in
part 6.3, and an example of numerical computations is
given.

For the sake of simplicity, the effect of deformation
band populations on fluid flow will be mainly studied
for a diagonal upscaled permeability tensor. On two
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opposite boundaries, the pressures are fixed to constant
values P1 and P2, whereas no flow boundary conditions
apply to the other borders (example in Fig. 7). A
flow calculated numerically allows us to estimate the
effective permeability Keff of a coarse upscaled block
D from equation [26]:

〈q〉 = − 1

μ
Keff 〈∇ p〉 . (8)

1,000 realizations of deformation bands configuration
are sampled according to the procedure described be-
low. Then, the mean values for the flow rate and pres-
sure gradient are estimated by using a local upscaling
method. Finally, Keff is calculated. In this upscaling
procedure, the averaged upscaled permeability Kups

is a positive definite diagonal tensor, where diagonal
elements are equal to the effective permeability Keff

in x and y directions. Strictly speaking, we use in this
paper an extended local upscaling. The linear size of the
extended domain between boundaries with Dirichlet
boundary conditions is equal to the size of the coarse
block plus one grid cell size.

Diagonal Kups may not give accurate quantitative
results, but we expect that the results are well suited
for the sensitivity analysis. Some of these calculations
are repeated in a 2D upscaling framework where Kups

is a full positive definite tensor. We aim at showing
that the trends obtained with diagonal Kups for the
effect of some characteristics of the deformation band
distribution are qualitatively similar in the upscaling
method with full Kups. Finally, we deal with the up-
scaling problem in the global domain and emphasize
the advantage of the adaptive local–global upscaling in
comparison with the pure local upscaling.

5 Parameters tested

One of the problems considered in this study is the
influence of deformation band distribution on flow in
the damage zone. Based on the modeling presented in
the previous section, we will upscale the effects on flow
in the damage zone based on the following parameters:

– Spatial distribution of the bands (i.e., clustering)
– Orientation of the deformation bands
– Heterogeneity of the petrophysical properties of the

deformation bands
– Variation in band density.

The sensitivity of these different parameters is of spe-
cial interest in defining the effective permeability re-
lated to damage zones in porous sandstones.

The clustering of the deformation bands is charac-
terized by the correlation dimension Dc defined by
Eq. 1. Since only a 1D fractal organization is taken into
account in these simulations, the correlation dimension
Dc is varied between 0 and 1. The following values are
particularly tested: 0.2, 0.5, 0.8, and 1. Furthermore,
in considering upscaling in the domain D, we assume
that all deformation bands intersect the segment Z
connecting the points with coordinates (0.5Lx, 0) and
(0.5Lx, Ly). Using the procedure described below, a
set of bands’ centers {Ci} ∈ Z is sampled according to
chosen Dc under the condition

∣∣Ci − C j
∣∣ > d, ∀ i, j, and

d being the width of each deformation band. In our
simulations, d is equal to 1 mm.

In this work, for simulating the set of points with a
given correlation dimension Dc in 1D, we use multi-
plicative cascade processes [16]. In 1D, the recursive al-
gorithm described in Darcel et al. [8] is used. As a result
of this algorithm, we get a subdivision Z = {Z1, Z2, . . . ,
Z M} for the entire domain (Z = Z1 ∪ Z2 ∪ . . . ∪ Z M)

and the corresponding set of probabilities P = {p1, p2,
. . . , pM} such that (p1 + p2 + . . . + pM = 1). When Z
and P are constructed, we distribute each deformation
band center Ci randomly and mutually independently
in one of the subdomains Z j according to the prob-
abilities {pj} by using the Monte Carlo method. On
each iteration, each Zj is divided in two equal parts.
The iteration procedure can be repeated infinitely, but
in our simulations, we used a number of iterations T
between 5 and 7 producing M subdomains (M = 2T).

The computing rule of P is illustrated briefly in Fig. 6.
Each element of P has the form

ql
1 qT−l

2 , 0 ≤ l ≤ T.

The set P involves Cl
T elements. Here, q1 and q2 are

calculated from [8]:

q1 + q2 = 1 and
q2

1 + q2
2

(1/2)Dc = 1
.

If we assume an isotropic cascade process, the pair
of probabilities corresponding to the two parts of the
divided subdomains can be randomly permuted. Thus,
for each element of the ordered set Z , we construct
the corresponding element in the ordered set P. The
distribution of deformation bands along a 1D scan line
will, thus, reproduce a clustered or fractal organization
characterized by the correlation dimension Dc.

Each band is characterized by its dip (angle be-
tween the horizontal and the band). Only the sense
of dip (toward the left or the right) is varied in this
study. Furthermore, each deformation band crosscuts
the whole model. The distribution of the orientations
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Fig. 6 Hierarchical construction of a fractal set points. Z (i)
j is

the length of the jth subdomain of the domain Z at the ith
iteration. q1 and q2 are the probabilities of finding one point in
one subdomain so that q1 + q2 = 1

can be random and correlated with a specific correla-
tion coefficient, described hereafter.

In some models, the angle between the deformation
bands and the boundaries with fixed pressure is θ i =
±π /6 (complementary angle of the dip). We assume
that {θ i} is the set of random variables ordered by the
y coordinate. Let the sign of θ1 be chosen randomly
according to the equal probability p = 0.5 for π /6 and
−π /6. The orientation of the other deformation bands
is then defined recursively. If two neighboring bands
have their centers in the positions Yi−1 and Yi and the
orientation of the first band is known, then the second
band has a same orientation with a probability of:

p(r) = p(Yi−1,Yi) = 1

2
(1 + exp (−α × r))

with r = |Yi−1 − Yi|
The correlation coefficient (radii) is defined as:

ρθ(θi−1, θi) = E(θi−1θi)√
Eθ2

i−1

√
Eθ2

i

= exp(−αr)

where Eθ i−1 = Eθ i = 0 and Iθ = 1/α. Iθ is the correlation
length of the random field θ .

The correlation length Iθ was varied between 0 and
0.2 m. The correlation length characterizes the distance
below which two bands will have a correlated orienta-
tion (same dip direction). In the case where Iθ = 0, the
orientations of the deformation bands are statistically
independent.

As observed in nature, the permeability inside a de-
formation band is not necessarily constant and homoge-
neous. In some simulations, holes are introduced in the
bands. It means that a certain length of the deformation
band presents an increased permeability in compari-
son with the rest of the band. In our simulations, an
average permeability contrast between the band and
the host-rock of around 10−2 is fixed. Hence, if we
consider a deformation band with a permeability KDB

of 0.001 darcy, the holes having a permeability Khole of
0.091 darcy and the total length of the holes in each
deformation band being 10 cm, then the perpendicular
average permeability of the band KDBaverage is calcu-
lated as the arithmetic average (L−h)×KDB+h×Khole

L (with
L, the length of the deformation band—here 1 m—and
h the total length of the holes) and equals 0.01 darcy.
Four configurations are tested: a single hole having the
same position in each deformation band, a single hole
with a random position, eight uniformly spaced holes
with a total length of 9 cm, and eight holes randomly
spaced (Fig. 10). In all the simulations, the host rock
permeability KHR was fixed to 1 darcy.

The deformation band frequency is not constant in
the damage zone but decreases away from the fault
core. Six densities were tested: 5, 10, 15, 25, 30, and 60
deformation bands per meter. The default frequency is
10 deformation bands in each upscaled block.

6 Numerical results

6.1 Local upscaling: diagonal permeability tensor

6.1.1 Reference bulk-effective permeability

If the deformation bands are oriented perpendicular to
the flow direction and if they present a constant per-
meability, the flow along a grid element perpendicular
to the bands can be calculated analytically [13, 24].
In this case, the bulk permeability corresponds to the
harmonic average of the permeabilities crossed by the
flow:

Kref =

N∑
i=1

li

N∑
i=1

li
ki

(9)

where li is the thickness of the different domains
crossed by the flow, ki the corresponding permeability,
and N is the number of existing domains. This value is
independent of the clustering of the deformation bands
in the media and was used as a reference value.
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6.1.2 Role of the orientation of the deformations bands
and their clustering

In the simulations presented in Fig. 7, the bands present
a homogeneous constant permeability of 10−2 darcy.
Ten bands are considered in the upscaled block. The
deformation bands are dipping 60◦ either toward the
left or toward the right. We consider here a variable
correlation coefficient Iθ between the orientations of
the dips as described above (parameters tested).

Figure 7 presents the bulk-effective permeability
Keff in the upscaled coarse block as a function of
the correlation dimension Dc and various correlation
lengths for the orientation of the band dips. The gray
line corresponds to the analytical average bulk per-
meability Kref for bands perpendicular to the flow
direction.

For a specific clustering, increasing the correlation
length increases the bulk-effective permeability. Vary-
ing the clustering of the bands has a negligible effect
when the orientations of the bands are mutually inde-
pendent (Iθ = 0 m). If the correlation length between
the orientations of the bands is strong (i.e., over a
certain length, the bands have the same orientation),
increasing the clustering of the bands (by decreasing
Dc) leads to a slight increase in the bulk permeability.
The correlation between the dip orientations has how-
ever not a strong effect on the effective permeability
in the system: even for a strong clustering (low Dc)
and for Iθ varying between 0 and 0.2 m, the variation
of the effective permeability is less than 0.03 (∼5%).

Fig. 7 Effective permeability Keff in the upscaled coarse block as
a function of the correlation dimension Dc for various correlation
lengths Iθ of the dip orientations. Kref is the reference permeabil-
ity calculated for continuous deformation bands perpendicular to
the flow direction

Fig. 8 Effective permeability Keff in the upscaled coarse block
as a function of the dip of the deformation bands

(
dip = π/2 − θ

)
.

Iθ = 0 (random orientation of the dip), number of struc-
tures = 10; permeability contrast between the bands and the
host rock: 10−2 and Dc = 0.8. Kref is the reference permeability
calculated for continuous deformation bands perpendicular to
the flow direction, corresponding to θ = 0 or a dip equal to 90◦

Actually, the difference between the curves Iθ = 0.1 m
and Iθ = 0.2 m is comparable with the statistical errors
of the numerical calculations.

Varying the dip of the deformation bands also influ-
ences the effective permeability in the block (Fig. 8):
The more parallel to the flow direction the bands are,
the higher the effective permeability. As expected, flow
along rather than across the deformation bands will be
favored.

Decreasing the deformation band permeability
(KDB) decreases the effective permeability in the sys-
tem. Moreover, we note that the effect of clustering and
correlation of dip orientation becomes stronger when
the permeability contrast increases (Fig. 9). For clus-
tering characterized by large correlation dimensions
(Dc = 0.8–1), the effect of the clustering has only a
small effect on the effective permeability in the up-
scaled block.

6.1.3 Effect of heterogeneous petrophysical properties
along the bands combined with variation in
clustering

In these simulations (Fig. 10), the deformation bands
are perpendicular to the flow direction. A heteroge-
neous distribution of permeability inside each band is
now considered. In order to simplify the configuration
of the simulations, we first consider a 10-cm “hole”
per band having permeability Kholes of 0.091 darcy; the
permeability in the rest of the band KDB being equal to
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Fig. 9 A Effective permeability Keff calculated in the upscaled
block and reference permeability Kref if the bands are perpen-
dicular to the fluid flow as a function of the correlation dimension
Dc. Different permeability contrasts KDB/KHR are tested; KDB
is the permeability in the deformation band, and KHR is the
permeability in the host rock. Number of deformation bands =
10; Iθ = 0.1. B Effective permeability Keff as a function of the
permeability contrast KDB/KHR for various correlation length of
dip orientation Iθ and various correlation dimensions Dc

10−3 darcy. The average permeability across the band
is equal to 10−2 darcy by considering a flow strictly
perpendicular to the band, which does not capture
the 2D nature of the flow. In this case, two reference
values were calculated: the one without holes “Kref for
KDB/KHR = 0.001” and the one taking into account the
holes “Kref for KDB/KHR = 0.01.”

The first configuration tested is the case where the
holes have exactly the same position in all the bands,
implying that the holes are aligned parallel to the flow
direction (Fig. 10, 1h-uniform). In this case, increasing
the clustering of the bands increases the bulk perme-
ability in the band (Fig. 10, curve 1h-uniform).

In nature, the probability of having holes aligned
parallel to the flow direction is rather low, unless the
holes are controlled by stratigraphic heterogeneities
within the layer. Therefore, a second configuration was
tested in order to randomly position the hole on each
deformation band (Fig. 10, 1h-random). This random
configuration reduces the general bulk permeability in
the block in comparison with the uniform one. More-
over, increasing the clustering (by decreasing Dc) in
that case leads to an additional decrease of the bulk-
effective permeability, contrary to the uniform case.

Because deformation band heterogeneities can occur
repeatedly along bands at the microscale [13], a third
configuration was explored, where the single deforma-
tion band hole was replaced by eight smaller holes of
the same total length (10 cm). In this configuration,
the hole length (1.25 cm) is larger that the grid step
(1.23 cm). The results indicate that this fragmentation
of the permeability heterogeneity globally increases the
bulk-effective permeability in the block. If the holes
are randomly distributed on each band (Fig. 10, curve
8h-random), then increasing the clustering decreases
the bulk-effective permeability. On the contrary, if the
holes are uniformly positioned, then increasing the clus-
tering (by decreasing Dc) increases the bulk-effective
permeability Keff .

Comparing the difference in bulk-effective perme-
ability Keff as a function of the clustering for the cases
above (uniform and random positions of the holes and
for only one large heterogeneity and for a fragmented
heterogeneity) indicates that clustering has a lower ef-
fect on bulk-effective permeability than the distribution
of permeability anomalies in the deformation bands.
It is also interesting to note that assigning an average
constant permeability to the band such as “Kref for
KDB/KHR = 0.01” leads in that case to an overestima-
tion of the effective permeability in the coarse block.

6.1.4 Effect of deformation band density

Deformation band density is varying within the damage
zone and is globally decreasing when moving away
from the fault core. In Fig. 11, the effect of variable
density is tested in combination with the effects of
clustering and orientation. As expected, the effective
permeability decreases with increasing deformations
band density in each coarse block. The results indicate
that for densities higher than 10 deformation bands per
meter, the effective permeability in the coarse block
is reduced at least by 50% compared to the host rock
permeability, if we consider deformation bands having
a constant permeability of 0.01 darcy and being per-
pendicular to the flow direction (curve Kref in Fig. 11).
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Fig. 10 Effects of permeability discontinuities along the defor-
mation bands (10 deformation bands perpendicular to the flow
direction). KDB = 0.001 and Kholes = 0.1. The total length of
holes in each deformation band is equal to 9 cm in all the
simulations. The different configurations tested are: 1h-uniform
only one hole placed in a similar position along the bands in all
the bands; 1h-random only one hole placed randomly along the

band; 8h-uniform eight holes placed similarly in all the bands;
8h-random eight holes placed randomly along the bands. The
two gray curves correspond to the analytical solution for ten
bands with a uniform permeability: the lower curve corresponds
to bands having a permeability of 0.001, and the upper one to
bands having a permeability of 0.01 (which is average across band
permeability of the band with the holes)

If we consider deformation bands with ±60◦ dip (and
Dc = 0.8, KDB = 0.01 darcy), a density of 15 deforma-
tion bands is required to reduce the effective perme-
ability by 50%. The correlation of the dip orientations
has no real influence on the effective permeability if the

Fig. 11 Effective permeability Keff in an upscaled block as a
function of the density of deformation bands (number of defor-
mation bands in block of 1 m long; KDB = 0.01) . The reference
permeability Kref corresponds to deformations bands being per-
pendicular to the flow direction and having a constant permeabil-
ity. Two types of clustering have been tested characterized by a
correlation dimension Dc equal to 0.2 (strong clustering) and 0.8
(weak clustering), respectively

correlation dimension Dc is large (0.8–1). For lower Dc,
the influence of the correlation of dip orientation has to
be taken into account.

6.2 Local upscaling: full permeability tensor

In this paragraph, we deal with 2D extended local
upscaling. Here, for each geological realization, we
solve two problems with fixed pressure on two opposite
boundaries and linear pressure variation on the other
boundaries parallel to the main flow direction [11]. The
resulting upscaled permeability is a positive definite full
tensor. The upscaled coarse block here has a size of 1
× 1 m and the total number of the inner nodes in the
coarse block is 80 × 80. The linear size of the extended
domain is equal to the size of the coarse block plus one
grid cell size.

In Table 1, we study the significance of off-diagonal
terms of the upscaled permeability tensor. In the
first row, the relations

∣∣Kups
xy

∣∣/Kups
xx and

∣∣Kups
xy

∣∣/Kups
yy are

shown for N = 10, Dc = 0.8, |θ | = π
/

6 and Iθ =
0 m. Twenty thousand realizations of the distribution
of the deformation bands were sampled. In the next
rows, we stepwise change one of these parameters to
compare the results. Here, we present the percentage of
realizations for which these ratios were greater or equal
to 5%, 10%, 15%, and 20%, respectively. Note that
the relative value of the off-diagonal terms grows with
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Table 1 Influence of different parameters of the model on the relation between off-diagonal and diagonal terms of the upscaled
permeability tensor

∣∣∣Kups
xy

∣∣∣
Kups

xx
,

∣∣∣Kups
xy

∣∣∣
Kups

yy
≥ 0.05

∣∣∣Kups
xy

∣∣∣
Kups

xx
,

∣∣∣Kups
xy

∣∣∣
Kups

yy
≥ 0.1

∣∣∣Kups
xy

∣∣∣
Kups

xx
,

∣∣∣Kups
xy

∣∣∣
Kups

yy
≥ 0.15

∣∣∣Kups
xy

∣∣∣
Kups

xx
,

∣∣∣Kups
xy

∣∣∣
Kups

yy
≥ 0.2

47.2%, 59.1% 15%, 27.3% 2.7%, 9.6% 0.2%, 2.3%
θ = ±π/4 60.5%, 60.6% 29.3%, 29.6% 10.7%, 11% 3%, 3.1%
N = 20 44.8%, 60.4% 12.4%, 29.9% 2%, 11.5% 0.17%, 3.5%
Dc = 0.2 36.4%, 49% 8.1%, 18% 1%, 5.1% 0.07%, 1.1%
Iθ= 0.1 73%, 78.7% 46.7%, 57.8% 24.3%, 38.6% 7.9%, 22.1%

20,000 realizations of deformation band distributions were sampled. The reference model (first row) has the following parameters: N
= 10, Dc = 0.8, |θ | = π/6, Iθ = 0 m

increasing |θ |. The ratios grow also with increasing per-
meability contrast and correlation length of band orien-
tation Iθ . On the other hand, the clustering (decreasing
of Dc) decreases the relative value of the off-diagonal
terms. At the same time, it seems that increasing the
band density is not important for the significance of
the off-diagonal terms: the difference between N = 10
(number of bands) and N = 20 does not exceed the
statistical error.

The numerical results presented in Fig. 12 are similar
to the curves in Fig. 7. The resulting average upscaled
permeability is an average of permeabilities computed
by extended local upscaling for Ns = 1,000 realiza-
tions. The curves presented in Fig. 12A are higher
than the corresponding curves in Fig. 7. The higher
value observed for the permeability is caused by the
different boundary conditions. However, for Iθ = 0 and
0.2 m, the relative difference does not exceed 5.5% and
12.5%, respectively, even for Dc = 0.2. The nondiag-
onal tensor element Kups

xy can change sign. Therefore,
the averaged value <Kups

xy > is small in comparison with
<Kups

xx > and <Kups
yy > and does not exceed 0.006 darcy.

Thus, the averaged upscaled permeability tensor is
practically diagonal for our model, as the diagonal
terms are of the order of unity.

6.3 Adaptive local–global upscaling

We have mentioned above the procedure of the
adaptive local–global upscaling. Following Chen and
Durlofsky [7], we prefer the transmissibility upscaling.
The basic idea of this iterative procedure is to use the
pressure obtained from a global coarse scale solution
for the calculation of the local properties. At the first
step, the coarse flow transmissibility is calculated by
using an extended local upscaling. Furthermore, the
global coarse scale pressure is calculated and used for
the determination of local boundary conditions. Then,
these boundary conditions are used for calculating lo-
cal properties on the next iteration. The convergence

Fig. 12 Simulations using 2D extended local upscaling: influence
of the correlation length Iθ on the dip orientations. Number of
bands = 10; the permeability in the deformation bands KDB is
0.01, the permeability in the host rock KHR = 1. A <Kups

yy > (aver-
aged upscaled permeability in the coarse block along the y axis—
at 60◦ of the deformation band) as a function of the correlation
dimension Dc. B <Kups

xx > (averaged upscaled permeability in the
coarse block along the y axis—at 30◦ of the deformation band) as
a function of the correlation dimension Dc
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criterion was chosen as a measure of the differences in
pressure and flow rate from one iteration to the next.

We consider a simple model, where the square rec-
tangular domain D consists in 4 × 4 equal coarse blocks
and an extended area (Fig. 13). Each block has linear
sizes equal to 1 × 1 m, Lx = Ly = 5 m. There are 50
deformation bands having a width of 0.001 m distrib-
uted in D according to Dc = 0.8 and Iθ = 0 m. The
pressures in the corners are P(0,0 m) = 1 Pa, P(5,0 m)
= P(0,5 m) = 2 Pa, P(5,5 m) = 3 Pa. The pressures
on the boundaries are fixed and are defined as a linear
function between the pressures in the corresponding
corners.

In Fig. 14, we present the result for accuracy of the
upscaled characteristics. The coarse grid pressure Pc is
calculated in blocks centers Xk, and Qx, Qy are the flow
rates in x and y directions calculated on the correspond-
ing inner boundaries. The measure of accuracy is based
on a comparison of the coarse block results with the
results of fine scale simulations

(
Pf

c, Qf
x, and Qf

y

)
and

is defined as ‖Pc−Pf
c‖

0.5(‖Pc‖+‖Pf
c‖) . The method converges after

a few iterations. The relative error for Pc, Qx, Qy are
about 0.5%, 21%, 29%. For comparison, on 0th itera-
tion, the accuracies of the extended local upscaling are
0.9%, 54%, 67%, respectively. These results indicate as
expected that some types of multiscale method should
be used to obtain sufficient accuracy in specific applica-
tions. For comparison in Fig. 14, we present the results
of local–global upscaling. We address the same model

Fig. 13 Test model for the 2D local–global upscaling. The global
boundary conditions are given by the pressures at the corners of
the extended area and linear function in between. Each coarse
block has a size of 1 × 1 m. The flow rates Qx and Qy are
calculated across the block boundaries, and the coarse block
pressure Pc is calculated in the middle of the block

as given above, but we divide the computational region
into 10 × 10 coarse grid blocks. The total number of fine
grid nodes is the same. It is natural that relative error
decreases to 0.25%, 16.5%, and 24%, respectively.

6.4 Probability density of the upscaled permeability

The influence of the model parameters has been studied
previously only for average upscaled permeabilities.
But it is also interesting to estimate some more complex
statistical characteristics like variance or correlation
function. It allows us to assess an error of the global
upscaling when the effective permeability is used as
coarse block permeability. Also, it allows to check the
accuracy of statistical averaging by using Eq. 7.

In Fig. 15, 3,000 realizations of deformation band
networks have been sampled in order to estimate the
probability density of the y component of diagonal
upscaled permeability tensor Kups in a coarse block of
one meter by 1 m. The following parameters have been
chosen: a density of 10 deformation bands per meter,
KDB/KHR= 0.01, Dc = 0.8, and θ = {π/6, − π/6}. For
Iθ = 0, 0.1, and 0.2 m, the effective permeability (aver-
aged upscaled permeability) <Kups

yy > is equal to 0.5806,
0.5875, and 0.5872; the mean deviation σ

(
Kups

yy
)

being
equal to 0.026, 0.030, and 0.032, respectively. Figure 15
presents the density of the random value Kups

yy . It points
out that the distribution is essentially non-Gaussian, but
the results for Iθ = 0.1 and 0.2 m are comparable apart
from the statistical error.

7 Discussion—concluding remarks

7.1 Computational method

A 2D statistical model of fault damage zone architec-
ture, incorporating the characteristics of deformation
band populations observed in natural examples, has
been built in order to investigate fluid flow and per-
meability upscaling in fault damage zones containing
deformation bands. The finite volume method devel-
oped for the numerical flow computation allows to
use a fine mesh with mesh size larger than the thin
width of deformation bands. This method was used
for simple 2D rectangular domains with the main flow
being parallel to the borders. Numerical tests show
that our method keeps the conservation law with high
accuracy, but the upscaling process applied in practice
may represent a computational problem with complex
geometries. Therefore, more accurate numerical meth-
ods and tools are needed to reduce the computational
error. Advanced multipoint approximation methods [1]
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Fig. 14 Accuracy of the
upscaled characteristics:
a coarse grid pressure Pc;
b flow rates Q in x and y
directions. The measure of
accuracy is made by
comparing the results (X)
with the ones obtained at fine
scale (Xf): relative error =
2|X−Xf||X|+|Xf|

and nonregular grids may be useful in order to pro-
duce reliable results. Further development in multiscale
methods may also improve the upscaling methods. But,
in many cases, the model error may be the domi-
nating one.

7.2 Results

Our results show that the effect of deformation bands
on permeability in the fault damage zone depends on
their spatial distribution (clustering), distribution of
orientation, and distribution of permeability anomalies
or “holes” in the bands. While damage zone flow is
overestimated when deformation bands are neglect-
ed, quasi 1D models assuming continuous bands with

homogeneous permeability oriented perpendicular to
the flow direction, as done in the reference model, leads
to an underestimation of flow. Figure 16 summarizes
the parameters affecting the permeability in the dam-
age zone and illustrates how changes in these parame-
ters can make the effective permeability in the media
differ from the permeability calculated analytically in
the reference model. More complex and realistic mod-
els have been considered through two cases. The first
one considers the effect of adding an orientation to the
deformation bands (horizontal complexity evolution of
the reference model, Fig. 16). The second one takes into
account heterogeneous petrophysical properties along
the bands. The effect of the different parameters is
evaluated by analyzing the relative difference of the
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Fig. 15 Probability density of the upscaled permeability. A
coarse block of 1 × 1 m is considered. The band density is 10
deformation bands per meter, KDB/KHR = 0.01, Dc = 0.8, θ =
{π/6, − π/6}; 3,000 realizations of deformation band networks
were sampled to estimate the probability density

effective permeability in the more complex models with
the permeability defined analytically in the reference
model ((Keff − Kref)/Kref).

Adding different orientations to the deformation
bands will change the effective permeability of the
system. Decreasing the dip angle of the deformation
bands will increase the permeability relatively to that
of the reference models where the dip angle is 90◦
(Fig. 8). If the orientations of the dip angles (antithetic
or synthetic) are correlated, by imposing a correlation
length Iθ , the permeability will be even higher than
with a random distribution of orientations (Fig. 7).
However, results indicate that the influence of the
dip angle value remains higher than having correlated
orientations. The discrepancy between the effective
permeability and reference permeability can be highly
increased if the density of deformation bands and the
permeabilities are changed. Increasing the deformation
band density (number of deformation bands per meter)
leads to a substantial increase in the relative difference
between the effective and the reference permeability.
Likewise, decreasing the permeability contrast between
host rock and deformation bands KDB/KHR causes high
relative permeability differences with the reference
model. Moreover, strong clustering of the deformation
bands will also increase the relative permeability dif-
ference regardless of the other parameters. The role
of all these parameters (KDB/KHR, density, dip angle,
correlation of the dip orientation, and clustering) are
interconnected, and the quantification of the effect of
one parameter depends on the values of the other

parameters; that is why we only give a qualitative and
relative influence of all the parameters in Fig. 16.

Another important factor to take into consideration
is the heterogeneity of the petrophysical properties.
The vertical axis of the graph in Fig. 16 illustrates how
variations in permeability along deformation bands can
affect the effective permeability of the system and de-
tach it from the reference permeability. The hetero-
geneity of the deformation band permeability is mod-
eled by introducing “holes” in the deformation bands.
Two cases can be pointed out: the first corresponding
to a weak clustering of the bands (Dc = 0.8) and
the second to a strong clustering (Dc = 0.2). If the
clustering is weak, the most important parameter is
the degree of fragmentation of the holes. The more
fragmented the holes are, the larger the deviation in
permeability from the reference model without hole. A
secondary parameter to consider is the position of the
holes. A uniform position (holes aligned in the model)
will favor a larger relative difference. On the contrary,
if the clustering is strong, the position of the holes
along the bands is the most important parameter, the
fragmentation having a minor effect. In damage zones
in porous sandstones, the clustering of the deformation
bands has been characterized by a correlation dimen-
sion close to 0.8. Moreover, observations indicate that
the permeability heterogeneity of the bands is more
likely to occur like numerous small holes rather than
a large singularity. The reference model is, thus, going
to give a rather unrealistic estimate of the permeability.
If both the orientation, the position of the bands, and
the variability in the petrophysical properties of the
bands are all taken into consideration (complex model
in Fig. 14), then the reference model can give significant
errors in permeability estimations.

For example, taking 10 deformation bands per meter
(average value observed in normal fault damage zones
in sandstones), a permeability contrast of 0.01 and a
clustering of 0.8, adding a dip of 60◦ to the bands
and a correlation length Iθ for the dip orientations
of 0.1 m, the relative error made on the permeability
measurement is equal to (Keff − Kref)/Kref = 17%. In-
creasing the density to 30 deformation bands, which
is commonly observed in a damage zone close to the
fault core, will lead to a relative error of 29%. These
relative errors are quite realistic according to observa-
tions made in the field. If the clustering was stronger,
then the relative difference with the reference model
would be even larger (say, 52% if Dc = 0.2 in our
simulations). These results were obtained using local
upscaling with diagonal upscaled permeability tensor.
However, tests using upscaling methods with a full
tensor indicate similar trends. The previous examples
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Fig. 16 Summary of the parameters that affect the permeabil-
ity defined by using the reference model. The reference model
corresponds to deformation bands with no orientation (perpen-
dicular to fluid flow) and homogeneous petrophysical proper-
ties. Adding an orientation (dip) to the bands will increase the
effective flow in the media compared to the reference model.
The difference with the permeability calculated for the reference
model will be even larger if the permeability contrast between
the deformation band and the host rock (KDB/KHR) is small, if
the density of deformation bands (number of bands per meter)
is large, if the dip angle is low, if the orientations of the dip
angle are correlated (Iθ �= 0) and if the deformation bands are

clustered (small Dc). Considering heterogeneous petrophysical
properties along the bands by adding “holes” will also increase
the relative permeability difference with the reference model. For
weak clustering, hole fragmentation is the parameter increasing
the most the effective permeability in the system, whereas for
strong clustering, the position of the holes along the bands is
the most important factor. The complex model corresponds to
deformation bands with variable orientations and position in the
system and presenting heterogeneous petrophysical properties.
This is the model presenting the largest relative difference with
the reference model

are given in order to illustrate the underestimation or
overestimation of the effective permeability done if
geological properties such as variable orientations or
heterogeneous petrophysical properties are omitted in
the models.

The question how an uncertainty in the coarse block
permeability can influence the uncertainty of the pro-
ductivity of the whole damage zone is still an open
question. A simple quasi 1D model is examined in
order to get some insights into the problem. The global
domain consists in 1 × M coarse blocks (Lx = 1 m,
Ly=M m, M = 10–40). We assume no flow boundary
conditions on the borders parallel to the y direction
and fixed pressures P1, P2 on the borders parallel to x
direction. Let the block permeability be Ki = αKref +

σKξi, where the coefficient α characterizes the relative
difference between Kref and the effective permeability
(α =Keff/Kref, < K> = Keff), σ K the mean deviation
of the random variable K, and ξ i the random variables
sampled with standard normal distribution. For the ex-
ample, the following parameters are taken: the density
is 10 deformation bands per meter, KDB/KHR = 0.01,
Dc = 0.8, θ = {π/6, − π/6} and Iθ = 0.1 m. In this
case, the numerical calculation give α = 1.17, σ K =
0.03 darcy. The resulting flux q can be calculated by
using Eqs. 2 and 9. We compare an average flux <q>

with qref—flux through the global domain, where each
coarse block has a permeability Kref. It is clear that for
small σK, <q>/qref should be approximately equal α.
Numerical calculations show that this ratio decreases
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slightly with an increase in σ K. For 1.1 ≤ α ≤ 1.5 and
σ K ≤ 0.2 Kref, the relative difference |<q>/qref − α|/α
does not exceed 3.5%.

To estimate the average relative difference
< ‖p − pref‖>/‖pref‖, the equations for pressure
with the original and perturbed permeability derived
from correspondent finite-volume approximation are
used:

Ap = b
(A + δA)(p + δp) = b .

Then, it is possible to estimate the relative pressure
perturbation:

∥∥A−1
∥∥ ‖δA‖ ≥ ‖δp‖

‖p‖ ≥ ∥∥δA−1
∥∥−1 ‖A‖−1 . (10)

In practice, Eq. 10 gives a very coarse estimation. Nu-
merical calculations show that this relative difference
increases linearly with an increase in σ K. But, for the
same values of α and σ K, it does not exceed 1.6%.
However, we should also expect that the relative error
increases with increasing coarse block scale and the size
of global domain.

From a geological point of view, by considering the
clustering of Dc = 0.8 found for the damage zone in
sandstones, the petrophysical properties of the bands
and their distribution have a relatively larger effect than
the orientation variations of the bands. Future works
should, thus, focus on better characterizing the petro-
physical properties of the faults and more specifically
their distribution along the deformation bands.

In addition, improved databases for the most sensi-
tive parameters have to be developed. As noted earlier,
the local upscaling procedure seems to be accurate
enough to give the trends caused by the variation of
different parameters. But for more accurate upscaling
required in specific applications or for more complex
models, more accurate upscaling tools like the ALG are
needed. In this paper, we have discussed the upscaling
problem in the global domain and shown the advantage
of the ALG upscaling in comparison with the pure local
upscaling. However, the numerical results of ALG are
presented for only one realization of the bands popula-
tion, sampled with given probability distribution. Stud-
ies based on ALG or other global upscaling methods
should be the topic for further research, with a stronger
focus on the quantitative parameters describing the
models.
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